In [1]:
import pandas as pd
import numpy as np
import os
import lightgbm as lgb
from sklearn.model_selection import train_test_split
In [2]:
os.listdir('../input')
Out[2]:
['sample_submission.csv', 'test_identity.csv', 'test_transaction.csv', 'train_identity.csv', 'train_transaction.csv']
In [3]:
submission = pd.read_csv("../input/sample_submission.csv")
In [4]:
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
In [5]:
submission.head(3)
Out[5]:
TransactionID | isFraud | |
---|---|---|
0 | 3663549 | 0.5 |
1 | 3663550 | 0.5 |
2 | 3663551 | 0.5 |
In [6]:
def to_category_columns(df) :
string_columns = df.columns[df.dtypes == 'object']
for c in string_columns :
df[c] = df[c].astype('category')
return df
In [7]:
raw_transaction = pd.read_csv("../input/train_transaction.csv")
raw_identity = pd.read_csv("../input/train_identity.csv")
COMPETITION_raw_transaction = pd.read_csv("../input/test_transaction.csv")
COMPETITION_raw_identity = pd.read_csv("../input/test_identity.csv")
In [8]:
# 카테고리 컬럼으로 변환
raw_transaction = to_category_columns(raw_transaction)
raw_identity = to_category_columns(raw_identity)
COMPETITION_raw_transaction = to_category_columns(COMPETITION_raw_transaction)
COMPETITION_raw_identity = to_category_columns(COMPETITION_raw_identity)
In [9]:
raw_transaction.head(2)
Out[9]:
TransactionID | isFraud | TransactionDT | TransactionAmt | ProductCD | card1 | card2 | card3 | card4 | card5 | card6 | addr1 | addr2 | dist1 | dist2 | P_emaildomain | R_emaildomain | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 | V18 | V19 | V20 | V21 | V22 | V23 | V24 | V25 | V26 | V27 | V28 | V29 | V30 | V31 | V32 | V33 | V34 | V35 | V36 | V37 | V38 | V39 | V40 | V41 | V42 | V43 | V44 | V45 | V46 | V47 | V48 | V49 | V50 | V51 | V52 | V53 | V54 | V55 | V56 | V57 | V58 | V59 | V60 | V61 | V62 | V63 | V64 | V65 | V66 | V67 | V68 | V69 | V70 | V71 | V72 | V73 | V74 | V75 | V76 | V77 | V78 | V79 | V80 | V81 | V82 | V83 | V84 | V85 | V86 | V87 | V88 | V89 | V90 | V91 | V92 | V93 | V94 | V95 | V96 | V97 | V98 | V99 | V100 | V101 | V102 | V103 | V104 | V105 | V106 | V107 | V108 | V109 | V110 | V111 | V112 | V113 | V114 | V115 | V116 | V117 | V118 | V119 | V120 | V121 | V122 | V123 | V124 | V125 | V126 | V127 | V128 | V129 | V130 | V131 | V132 | V133 | V134 | V135 | V136 | V137 | V138 | V139 | V140 | V141 | V142 | V143 | V144 | V145 | V146 | V147 | V148 | V149 | V150 | V151 | V152 | V153 | V154 | V155 | V156 | V157 | V158 | V159 | V160 | V161 | V162 | V163 | V164 | V165 | V166 | V167 | V168 | V169 | V170 | V171 | V172 | V173 | V174 | V175 | V176 | V177 | V178 | V179 | V180 | V181 | V182 | V183 | V184 | V185 | V186 | V187 | V188 | V189 | V190 | V191 | V192 | V193 | V194 | V195 | V196 | V197 | V198 | V199 | V200 | V201 | V202 | V203 | V204 | V205 | V206 | V207 | V208 | V209 | V210 | V211 | V212 | V213 | V214 | V215 | V216 | V217 | V218 | V219 | V220 | V221 | V222 | V223 | V224 | V225 | V226 | V227 | V228 | V229 | V230 | V231 | V232 | V233 | V234 | V235 | V236 | V237 | V238 | V239 | V240 | V241 | V242 | V243 | V244 | V245 | V246 | V247 | V248 | V249 | V250 | V251 | V252 | V253 | V254 | V255 | V256 | V257 | V258 | V259 | V260 | V261 | V262 | V263 | V264 | V265 | V266 | V267 | V268 | V269 | V270 | V271 | V272 | V273 | V274 | V275 | V276 | V277 | V278 | V279 | V280 | V281 | V282 | V283 | V284 | V285 | V286 | V287 | V288 | V289 | V290 | V291 | V292 | V293 | V294 | V295 | V296 | V297 | V298 | V299 | V300 | V301 | V302 | V303 | V304 | V305 | V306 | V307 | V308 | V309 | V310 | V311 | V312 | V313 | V314 | V315 | V316 | V317 | V318 | V319 | V320 | V321 | V322 | V323 | V324 | V325 | V326 | V327 | V328 | V329 | V330 | V331 | V332 | V333 | V334 | V335 | V336 | V337 | V338 | V339 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2987000 | 0 | 86400 | 68.5 | W | 13926 | NaN | 150.0 | discover | 142.0 | credit | 315.0 | 87.0 | 19.0 | NaN | NaN | NaN | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 2.0 | 0.0 | 1.0 | 1.0 | 14.0 | NaN | 13.0 | NaN | NaN | NaN | NaN | NaN | NaN | 13.0 | 13.0 | NaN | NaN | NaN | 0.0 | T | T | T | M2 | F | T | NaN | NaN | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 117.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 117.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 117.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 117.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | 2987001 | 0 | 86401 | 29.0 | W | 2755 | 404.0 | 150.0 | mastercard | 102.0 | credit | 325.0 | 87.0 | NaN | NaN | gmail.com | NaN | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | NaN | NaN | 0.0 | NaN | NaN | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | NaN | 0.0 | NaN | NaN | NaN | M0 | T | T | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
In [10]:
raw_identity.head(2)
Out[10]:
TransactionID | id_01 | id_02 | id_03 | id_04 | id_05 | id_06 | id_07 | id_08 | id_09 | id_10 | id_11 | id_12 | id_13 | id_14 | id_15 | id_16 | id_17 | id_18 | id_19 | id_20 | id_21 | id_22 | id_23 | id_24 | id_25 | id_26 | id_27 | id_28 | id_29 | id_30 | id_31 | id_32 | id_33 | id_34 | id_35 | id_36 | id_37 | id_38 | DeviceType | DeviceInfo | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2987004 | 0.0 | 70787.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 100.0 | NotFound | NaN | -480.0 | New | NotFound | 166.0 | NaN | 542.0 | 144.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | New | NotFound | Android 7.0 | samsung browser 6.2 | 32.0 | 2220×1080 | match_status:2 | T | F | T | T | mobile | SAMSUNG SM-G892A Build/NRD90M |
1 | 2987008 | -5.0 | 98945.0 | NaN | NaN | 0.0 | -5.0 | NaN | NaN | NaN | NaN | 100.0 | NotFound | 49.0 | -300.0 | New | NotFound | 166.0 | NaN | 621.0 | 500.0 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | New | NotFound | iOS 11.1.2 | mobile safari 11.0 | 32.0 | 1334×750 | match_status:1 | T | F | F | T | mobile | iOS Device |
In [23]:
raw_all = raw_transaction.merge(raw_identity, left_on = 'TransactionID', right_on='TransactionID')
COMPETITION_raw_all = COMPETITION_raw_transaction.merge(COMPETITION_raw_identity, on='TransactionID', how='left')
In [24]:
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
In [25]:
feature_list = ['TransactionDT', 'TransactionAmt', 'ProductCD',
'card1', 'card2', 'card3', 'card4', 'card5', 'card6',
'addr1', 'addr2', 'dist1', 'dist2',
'P_emaildomain', 'R_emaildomain',
'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11', 'C12', 'C13', 'C14',
'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15',
'M1', 'M2', 'M3', 'M4', 'M5', 'M6', 'M7', 'M8', 'M9',
'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15',
'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'V29',
'V30', 'V31', 'V32', 'V33', 'V34', 'V35', 'V36', 'V37', 'V38', 'V39', 'V40', 'V41', 'V42', 'V43',
'V44', 'V45', 'V46', 'V47', 'V48', 'V49', 'V50', 'V51', 'V52', 'V53', 'V54', 'V55', 'V56', 'V57',
'V58', 'V59', 'V60', 'V61', 'V62', 'V63', 'V64', 'V65', 'V66', 'V67', 'V68', 'V69', 'V70', 'V71',
'V72', 'V73', 'V74', 'V75', 'V76', 'V77', 'V78', 'V79', 'V80', 'V81', 'V82', 'V83', 'V84', 'V85',
'V86', 'V87', 'V88', 'V89', 'V90', 'V91', 'V92', 'V93', 'V94', 'V95', 'V96', 'V97', 'V98', 'V99',
'V100', 'V101', 'V102', 'V103', 'V104', 'V105', 'V106', 'V107', 'V108', 'V109', 'V110', 'V111',
'V112', 'V113', 'V114', 'V115', 'V116', 'V117', 'V118', 'V119', 'V120', 'V121', 'V122', 'V123',
'V124', 'V125', 'V126', 'V127', 'V128', 'V129', 'V130', 'V131', 'V132', 'V133', 'V134', 'V135',
'V136', 'V137', 'V138', 'V139', 'V140', 'V141', 'V142', 'V143', 'V144', 'V145', 'V146', 'V147',
'V148', 'V149', 'V150', 'V151', 'V152', 'V153', 'V154', 'V155', 'V156', 'V157', 'V158', 'V159',
'V160', 'V161', 'V162', 'V163', 'V164', 'V165', 'V166', 'V167', 'V168', 'V169', 'V170', 'V171',
'V172', 'V173', 'V174', 'V175', 'V176', 'V177', 'V178', 'V179', 'V180', 'V181', 'V182', 'V183',
'V184', 'V185', 'V186', 'V187', 'V188', 'V189', 'V190', 'V191', 'V192', 'V193', 'V194', 'V195',
'V196', 'V197', 'V198', 'V199', 'V200', 'V201', 'V202', 'V203', 'V204', 'V205', 'V206', 'V207',
'V208', 'V209', 'V210', 'V211', 'V212', 'V213', 'V214', 'V215', 'V216', 'V217', 'V218', 'V219',
'V220', 'V221', 'V222', 'V223', 'V224', 'V225', 'V226', 'V227', 'V228', 'V229', 'V230', 'V231',
'V232', 'V233', 'V234', 'V235', 'V236', 'V237', 'V238', 'V239', 'V240', 'V241', 'V242', 'V243',
'V244', 'V245', 'V246', 'V247', 'V248', 'V249', 'V250', 'V251', 'V252', 'V253', 'V254', 'V255',
'V256', 'V257', 'V258', 'V259', 'V260', 'V261', 'V262', 'V263', 'V264', 'V265', 'V266', 'V267',
'V268', 'V269', 'V270', 'V271', 'V272', 'V273', 'V274', 'V275', 'V276', 'V277', 'V278', 'V279',
'V280', 'V281', 'V282', 'V283', 'V284', 'V285', 'V286', 'V287', 'V288', 'V289', 'V290', 'V291',
'V292', 'V293', 'V294', 'V295', 'V296', 'V297', 'V298', 'V299', 'V300', 'V301', 'V302', 'V303',
'V304', 'V305', 'V306', 'V307', 'V308', 'V309', 'V310', 'V311', 'V312', 'V313', 'V314', 'V315',
'V316', 'V317', 'V318', 'V319', 'V320', 'V321', 'V322', 'V323', 'V324', 'V325', 'V326', 'V327',
'V328', 'V329', 'V330', 'V331', 'V332', 'V333', 'V334', 'V335', 'V336', 'V337', 'V338', 'V339',
'id_01', 'id_02', 'id_03', 'id_04', 'id_05', 'id_06', 'id_07', 'id_08', 'id_09', 'id_10', 'id_11',
'id_12', 'id_13', 'id_14', 'id_15', 'id_16', 'id_17', 'id_18', 'id_19', 'id_20', 'id_21', 'id_22',
'id_23', 'id_24', 'id_25', 'id_26', 'id_27', 'id_28', 'id_29', 'id_30', 'id_31', 'id_32', 'id_33',
'id_34', 'id_35', 'id_36', 'id_37', 'id_38', 'DeviceType', 'DeviceInfo']
In [26]:
train_raw_X = raw_all[feature_list]
train_raw_y = raw_all[['isFraud']]
COMPETITION_X = COMPETITION_raw_all[feature_list]
In [15]:
train_X, valid_X, train_y, valid_y = train_test_split(train_raw_X, train_raw_y, test_size=0.2, random_state=1493)
In [37]:
params = {'learning_rate': 0.1,
'max_depth': 16,
'boosting': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'is_training_metric': True,
'num_leaves': 144,
'feature_fraction': 0.9,
'bagging_fraction': 0.7,
'bagging_freq': 5,
'seed':2018}
In [38]:
train_ds = lgb.Dataset(train_X, label = train_y)
valid_ds = lgb.Dataset(valid_X, label = valid_y)
In [39]:
model = lgb.train(params, train_ds, 1000, valid_ds, verbose_eval=100, early_stopping_rounds=100)
C:\Anaconda3\lib\site-packages\lightgbm\basic.py:762: UserWarning: categorical_feature in param dict is overridden. warnings.warn('categorical_feature in param dict is overridden.')
Training until validation scores don't improve for 100 rounds. [100] valid_0's auc: 0.980277 [200] valid_0's auc: 0.981711 [300] valid_0's auc: 0.981681 Early stopping, best iteration is: [272] valid_0's auc: 0.982139
In [40]:
predict = model.predict(COMPETITION_X)
In [41]:
submission['isFraud'] = predict
In [42]:
submission.to_csv("./submission/submission_fraud_0829_all.csv", index=False)
Permutation Importance¶
- Predict시 하나의 Feature를 엉망진창으로 만든다음에 예측력이 어떻게 변하는지 확인
In [56]:
from sklearn.ensemble import RandomForestClassifier
category_list = list(train_X.columns[train_X.dtypes == 'category']) + ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11']
train_wo_dummy_X = train_X.drop(category_list, axis = 1).fillna(0)
valid_wo_dummy_X = valid_X.drop(category_list, axis = 1).fillna(0)
In [54]:
train_wo_dummy_X.describe()
Out[54]:
TransactionDT | TransactionAmt | card1 | card2 | card3 | card5 | addr1 | addr2 | dist1 | dist2 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | V12 | V13 | V14 | V15 | V16 | V17 | V18 | V19 | V20 | V21 | V22 | V23 | V24 | V25 | V26 | V27 | V28 | V29 | V30 | V31 | V32 | V33 | V34 | V35 | V36 | V37 | V38 | V39 | V40 | V41 | V42 | V43 | V44 | V45 | V46 | V47 | V48 | V49 | V50 | V51 | V52 | V53 | V54 | V55 | V56 | V57 | V58 | V59 | V60 | V61 | V62 | V63 | V64 | V65 | V66 | V67 | V68 | V69 | V70 | V71 | V72 | V73 | V74 | V75 | V76 | V77 | V78 | V79 | V80 | V81 | V82 | V83 | V84 | V85 | V86 | V87 | V88 | V89 | V90 | V91 | V92 | V93 | V94 | V95 | V96 | V97 | V98 | V99 | V100 | V101 | V102 | V103 | V104 | V105 | V106 | V107 | V108 | V109 | V110 | V111 | V112 | V113 | V114 | V115 | V116 | V117 | V118 | V119 | V120 | V121 | V122 | V123 | V124 | V125 | V126 | V127 | V128 | V129 | V130 | V131 | V132 | V133 | V134 | V135 | V136 | V137 | V138 | V139 | V140 | V141 | V142 | V143 | V144 | V145 | V146 | V147 | V148 | V149 | V150 | V151 | V152 | V153 | V154 | V155 | V156 | V157 | V158 | V159 | V160 | V161 | V162 | V163 | V164 | V165 | V166 | V167 | V168 | V169 | V170 | V171 | V172 | V173 | V174 | V175 | V176 | V177 | V178 | V179 | V180 | V181 | V182 | V183 | V184 | V185 | V186 | V187 | V188 | V189 | V190 | V191 | V192 | V193 | V194 | V195 | V196 | V197 | V198 | V199 | V200 | V201 | V202 | V203 | V204 | V205 | V206 | V207 | V208 | V209 | V210 | V211 | V212 | V213 | V214 | V215 | V216 | V217 | V218 | V219 | V220 | V221 | V222 | V223 | V224 | V225 | V226 | V227 | V228 | V229 | V230 | V231 | V232 | V233 | V234 | V235 | V236 | V237 | V238 | V239 | V240 | V241 | V242 | V243 | V244 | V245 | V246 | V247 | V248 | V249 | V250 | V251 | V252 | V253 | V254 | V255 | V256 | V257 | V258 | V259 | V260 | V261 | V262 | V263 | V264 | V265 | V266 | V267 | V268 | V269 | V270 | V271 | V272 | V273 | V274 | V275 | V276 | V277 | V278 | V279 | V280 | V281 | V282 | V283 | V284 | V285 | V286 | V287 | V288 | V289 | V290 | V291 | V292 | V293 | V294 | V295 | V296 | V297 | V298 | V299 | V300 | V301 | V302 | V303 | V304 | V305 | V306 | V307 | V308 | V309 | V310 | V311 | V312 | V313 | V314 | V315 | V316 | V317 | V318 | V319 | V320 | V321 | V322 | V323 | V324 | V325 | V326 | V327 | V328 | V329 | V330 | V331 | V332 | V333 | V334 | V335 | V336 | V337 | V338 | V339 | id_01 | id_02 | id_03 | id_04 | id_05 | id_06 | id_07 | id_08 | id_09 | id_10 | id_11 | id_13 | id_14 | id_17 | id_18 | id_19 | id_20 | id_21 | id_22 | id_24 | id_25 | id_26 | id_32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 1.153860e+05 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.0 | 115386.0 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 | 115386.000000 |
mean | 6.168889e+06 | 83.507936 | 9874.665315 | 388.922694 | 161.493084 | 189.878616 | 172.478316 | 50.095861 | 0.0 | 60.594032 | 28.094483 | 34.705112 | 0.022949 | 15.762580 | 0.0 | 15.741710 | 10.585166 | 19.566351 | 0.0 | 19.968107 | 20.569740 | 14.927964 | 20.733755 | 10.608393 | 29.459137 | 26.741996 | 6.965559 | 27.457733 | 10.621453 | 33.167975 | 10.323783 | 75.931604 | 0.292479 | 11.219455 | 0.0 | 21.939100 | 7.699175 | 24.977484 | 25.942315 | 0.0 | 0.0 | 0.477770 | 0.396131 | 0.398896 | 0.476479 | 0.481124 | 0.436734 | 0.439828 | 0.461165 | 0.470534 | 0.515738 | 0.520098 | 0.464328 | 0.467873 | 0.002903 | 0.003137 | 0.0 | 0.0 | 0.462240 | 0.466963 | 0.396131 | 0.398861 | 0.0 | 0.0 | 0.663625 | 0.746416 | 0.476548 | 0.507852 | 0.446510 | 0.448313 | 0.485059 | 0.580807 | 0.615023 | 0.471400 | 0.489756 | 0.0 | 0.0 | 0.441145 | 0.429212 | 0.446718 | 0.0 | 0.0 | 0.606157 | 0.690768 | 0.414513 | 0.428605 | 0.470690 | 0.499229 | 0.438476 | 0.452854 | 0.458245 | 0.497166 | 0.467986 | 0.464840 | 0.481653 | 0.002037 | 0.0 | 0.0 | 0.458297 | 0.473619 | 0.420190 | 0.436639 | 0.0 | 0.0 | 0.671615 | 0.766375 | 0.432340 | 0.495502 | 0.525584 | 0.460472 | 0.473212 | 0.472310 | 0.515860 | 0.583017 | 0.609831 | 0.470568 | 0.003215 | 0.0 | 0.0 | 0.479590 | 0.494826 | 0.406921 | 3.525124 | 7.381753 | 5.205736 | 0.031876 | 0.450427 | 0.158936 | 3.300790 | 6.189754 | 4.606443 | 0.187579 | 0.735167 | 0.434801 | 0.999558 | 1.007800 | 1.008251 | 1.007947 | 1.009074 | 1.009360 | 1.009230 | 1.014742 | 1.016631 | 1.015530 | 1.001777 | 1.001915 | 1.001855 | 1.000815 | 1.001153 | 1.000962 | 1.059669 | 1.093668 | 1.079516 | 401.776520 | 771.533151 | 569.061776 | 5.510615 | 34.010612 | 15.965294 | 364.799591 | 651.065360 | 495.037021 | 29.970758 | 83.574306 | 55.705049 | 0.019881 | 0.606460 | 0.635510 | 0.021034 | 0.027170 | 4.723025 | 2.098521 | 12.518824 | 0.089023 | 0.096138 | 0.432669 | 0.438580 | 157.090973 | 3.657697 | 5.348422 | 0.426170 | 0.428579 | 0.433987 | 0.439767 | 0.462162 | 0.471244 | 1537.238823 | 26890.691299 | 2.657573 | 3.650898 | 3.048877 | 492.798761 | 1265.469140 | 202.005243 | 3.768395 | 5.665878 | 0.164318 | 1.392916 | 1.641274 | 0.128473 | 0.053733 | 0.124885 | 0.206672 | 1.334651 | 3.379717 | 6.411731 | 4.701047 | 0.894771 | 0.245723 | 0.828575 | 0.471175 | 0.128872 | 0.169050 | 1.112804 | 1.780814 | 0.982546 | 1.005226 | 1.174337 | 1.025896 | 1.197199 | 1.114303 | 0.916732 | 0.924653 | 1.050665 | 0.919704 | 0.931291 | 1.229837 | 1.084066 | 1.122424 | 424.467690 | 1039.871266 | 663.012137 | 17.814547 | 6.323119 | 70.892849 | 8.668791 | 33.755783 | 13.945417 | 368.084546 | 738.090710 | 517.087101 | 36.148096 | 127.732332 | 67.973191 | 0.958366 | 1.561957 | 1.240367 | 0.167533 | 1.253896 | 1.335925 | 0.084300 | 0.353483 | 0.171581 | 0.222791 | 0.148744 | 1.220919 | 1.473316 | 1.320628 | 0.696592 | 0.914201 | 0.826573 | 1.988837 | 0.166771 | 0.278595 | 0.230115 | 0.126150 | 0.134713 | 0.903810 | 0.903134 | 1.004975 | 1.061463 | 1.009637 | 0.861326 | 1.067729 | 0.925754 | 0.964112 | 0.940929 | 0.772269 | 0.777685 | 0.931473 | 1.042891 | 0.968003 | 0.791413 | 0.799482 | 1.127719 | 1.208838 | 0.950687 | 0.871900 | 0.999194 | 0.915241 | 104.962798 | 179.527843 | 136.581873 | 8.527182 | 32.620792 | 16.824959 | 5.639887 | 7.555432 | 9.273321 | 8.299797 | 66.894739 | 96.077602 | 79.809308 | 27.456282 | 45.564335 | 36.915860 | 3.672335 | 5.437939 | 0.120283 | 1.195734 | 1.305826 | 0.082913 | 0.599197 | 0.047163 | 0.244016 | 0.123958 | 0.140095 | 1.194911 | 1.548073 | 1.301354 | 3.388548 | 6.511726 | 4.753930 | 0.737906 | 0.190257 | 0.718380 | 0.427418 | 0.084577 | 0.087940 | 1.025384 | 1.142487 | 1.073362 | 0.999991 | 409.193198 | 791.126184 | 579.503936 | 7.501585 | 37.906779 | 4.820404 | 18.586758 | 7.989806 | 16.356228 | 8.772873 | 370.193875 | 670.356693 | 503.831401 | 29.601777 | 79.890230 | 54.262577 | 3.509923 | 7.426837 | 5.210034 | 0.033210 | 0.485154 | 0.168591 | 0.192536 | 0.748722 | 0.443191 | 406.037173 | 778.373055 | 574.128566 | 5.766349 | 33.954261 | 16.450058 | 30.799268 | 85.541892 | 56.821558 | -10.191930 | 170463.321755 | 0.028478 | -0.027187 | 1.518850 | -6.366925 | 0.468766 | -1.370487 | 0.048784 | -0.153259 | 97.499820 | 42.402259 | -191.145286 | 183.011423 | 4.448789 | 340.985345 | 390.026000 | 13.176729 | 0.576058 | 0.421854 | 11.768880 | 5.344834 | 14.274314 |
std | 4.812374e+06 | 99.571840 | 5051.312255 | 162.775094 | 20.177633 | 47.294224 | 164.828145 | 42.745039 | 0.0 | 290.181117 | 250.624813 | 292.049031 | 0.293378 | 132.328064 | 0.0 | 132.911829 | 117.136641 | 181.424952 | 0.0 | 182.058329 | 177.229337 | 164.402871 | 166.092147 | 87.481930 | 95.616678 | 92.075660 | 41.212396 | 97.448790 | 54.887019 | 105.309414 | 53.004538 | 182.112890 | 0.361711 | 68.102769 | 0.0 | 83.571363 | 45.148951 | 94.135698 | 99.259342 | 0.0 | 0.0 | 0.499508 | 0.497719 | 0.513517 | 0.555602 | 0.569428 | 0.505982 | 0.522001 | 0.505467 | 0.548393 | 0.630685 | 0.646442 | 0.508298 | 0.522289 | 0.055235 | 0.060823 | 0.0 | 0.0 | 0.516084 | 0.536880 | 0.496219 | 0.509189 | 0.0 | 0.0 | 1.294798 | 1.549764 | 0.658786 | 0.746661 | 0.497133 | 0.538103 | 0.620494 | 1.183443 | 1.307171 | 0.556876 | 0.609215 | 0.0 | 0.0 | 0.503408 | 0.549151 | 0.599338 | 0.0 | 0.0 | 0.890855 | 1.317557 | 0.523100 | 0.568872 | 0.585013 | 0.656991 | 0.526934 | 0.572332 | 0.540442 | 0.633534 | 0.498976 | 0.541791 | 0.576148 | 0.046596 | 0.0 | 0.0 | 0.534350 | 0.582644 | 0.536306 | 0.571524 | 0.0 | 0.0 | 1.136032 | 1.532520 | 0.573303 | 0.633265 | 0.710533 | 0.530332 | 0.578475 | 0.540447 | 0.644855 | 0.912059 | 1.022860 | 0.499135 | 0.060462 | 0.0 | 0.0 | 0.538909 | 0.591569 | 0.491262 | 42.149673 | 80.411069 | 55.536508 | 0.226179 | 2.930663 | 1.018043 | 41.251922 | 71.954590 | 51.524315 | 1.191882 | 6.627205 | 3.582567 | 0.021019 | 0.115414 | 0.117320 | 0.116041 | 0.130116 | 0.131191 | 0.130704 | 0.150972 | 0.157357 | 0.153879 | 0.051886 | 0.053201 | 0.052630 | 0.042450 | 0.046253 | 0.044148 | 0.361301 | 0.463380 | 0.410900 | 4677.735487 | 8427.088848 | 6003.625745 | 208.912256 | 386.263770 | 237.619166 | 4528.938282 | 7573.806525 | 5543.962826 | 540.640188 | 850.683456 | 648.624263 | 0.305209 | 1.125642 | 1.227248 | 0.161082 | 0.235547 | 41.590002 | 8.090266 | 49.647993 | 0.518527 | 0.570866 | 0.576823 | 0.607925 | 638.868549 | 11.896626 | 16.891030 | 0.548292 | 0.558164 | 0.589986 | 0.620013 | 0.650834 | 0.687523 | 6419.487580 | 109496.737434 | 42.450968 | 50.691539 | 46.209395 | 4548.709730 | 6268.907299 | 887.016199 | 41.277305 | 53.073725 | 0.896375 | 1.735216 | 2.426707 | 0.915882 | 0.262138 | 0.375720 | 0.841849 | 1.822599 | 40.403220 | 68.170838 | 49.577900 | 6.004512 | 1.229909 | 5.687866 | 2.906652 | 0.536065 | 0.695229 | 1.230422 | 9.679993 | 0.679674 | 0.794987 | 1.474167 | 0.697569 | 2.596965 | 1.711186 | 0.342229 | 0.406249 | 1.114130 | 0.366149 | 0.503274 | 1.656561 | 1.236425 | 1.402048 | 4568.108808 | 8939.436375 | 5935.385334 | 276.232812 | 209.130812 | 923.801350 | 57.724303 | 243.661747 | 84.050381 | 4441.359084 | 7359.556854 | 5371.980258 | 441.432901 | 961.489517 | 574.184065 | 9.158402 | 13.263291 | 11.525525 | 0.996177 | 2.814989 | 2.996290 | 0.381995 | 3.169526 | 1.182066 | 2.485717 | 2.165442 | 1.388272 | 3.990228 | 2.013513 | 8.514386 | 10.017184 | 9.722313 | 11.027960 | 0.861375 | 2.050995 | 1.641686 | 0.570677 | 0.611499 | 0.300184 | 0.297005 | 0.705552 | 1.328238 | 0.738795 | 1.905293 | 1.033820 | 0.402024 | 0.867004 | 0.573311 | 0.497695 | 0.510353 | 0.474940 | 3.311509 | 1.267559 | 0.978814 | 1.010306 | 1.264928 | 1.888422 | 2.185641 | 0.459831 | 1.271829 | 0.654934 | 1171.565500 | 2108.614152 | 1464.968630 | 215.006945 | 603.542094 | 298.285794 | 214.351426 | 63.826745 | 73.089779 | 68.346827 | 896.993337 | 1194.107497 | 1020.205168 | 454.678767 | 589.317177 | 509.797559 | 42.114237 | 55.342612 | 0.678262 | 1.071134 | 1.503093 | 0.332672 | 2.989988 | 0.235096 | 1.031999 | 0.364333 | 0.450220 | 0.904881 | 11.369370 | 2.558249 | 41.259109 | 72.883534 | 51.575367 | 6.194574 | 1.121861 | 6.138211 | 3.337412 | 0.430291 | 0.443063 | 0.380787 | 0.718921 | 0.503022 | 0.002944 | 4663.439167 | 8412.161238 | 5977.793742 | 207.196634 | 364.089725 | 204.683938 | 230.084800 | 42.875767 | 89.748046 | 47.154161 | 4530.396024 | 7623.043865 | 5547.501981 | 520.773847 | 809.147724 | 627.933947 | 42.162314 | 80.499098 | 55.555905 | 0.231967 | 3.001756 | 1.035762 | 1.206598 | 6.633856 | 3.589735 | 4670.231426 | 8417.667931 | 5994.766375 | 201.080924 | 307.169049 | 222.860262 | 430.623747 | 786.326832 | 558.524878 | 14.413061 | 159880.093140 | 0.404705 | 0.479142 | 5.100343 | 16.164043 | 3.256050 | 8.630918 | 0.702569 | 1.944754 | 14.839538 | 19.012923 | 184.817989 | 45.461489 | 6.658530 | 152.748589 | 166.805997 | 78.049705 | 3.263052 | 2.327507 | 63.924462 | 28.370703 | 13.497414 |
min | 8.650600e+04 | 0.251000 | 1000.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -83.000000 | 0.000000 | -83.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | -83.000000 | 0.000000 | -193.000000 | -83.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -100.000000 | 0.000000 | -13.000000 | -28.000000 | -72.000000 | -100.000000 | -46.000000 | -100.000000 | -36.000000 | -100.000000 | 0.000000 | 0.000000 | -660.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 1.885763e+06 | 25.419000 | 5713.000000 | 258.000000 | 150.000000 | 138.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 0.0 | 1.000000 | 0.000000 | 1.000000 | 0.0 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -10.000000 | 64122.000000 | 0.000000 | 0.000000 | 0.000000 | -5.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 100.000000 | 33.000000 | -300.000000 | 166.000000 | 0.000000 | 254.000000 | 225.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
50% | 4.909754e+06 | 50.000000 | 9633.000000 | 408.000000 | 150.000000 | 224.000000 | 184.000000 | 87.000000 | 0.0 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 0.0 | 1.000000 | 0.000000 | 1.000000 | 0.0 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.125000 | 0.000000 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -5.000000 | 122577.500000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 100.000000 | 52.000000 | -300.000000 | 166.000000 | 0.000000 | 321.000000 | 417.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 24.000000 |
75% | 1.026451e+07 | 100.000000 | 15063.000000 | 545.000000 | 185.000000 | 226.000000 | 315.000000 | 87.000000 | 0.0 | 0.000000 | 2.000000 | 2.000000 | 0.000000 | 1.000000 | 0.0 | 1.000000 | 1.000000 | 2.000000 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 2.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 45.583332 | 0.666666 | 0.000000 | 0.0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.0 | 0.0 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 27.925699 | 15.059950 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 21.886875 | 3.639650 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 19.786800 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | -5.000000 | 224775.750000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 100.000000 | 52.000000 | 0.000000 | 225.000000 | 13.000000 | 427.000000 | 533.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 24.000000 |
max | 1.581094e+07 | 1800.000000 | 18396.000000 | 600.000000 | 231.000000 | 237.000000 | 540.000000 | 102.000000 | 0.0 | 11623.000000 | 4685.000000 | 5691.000000 | 24.000000 | 2253.000000 | 0.0 | 2253.000000 | 2255.000000 | 3331.000000 | 0.0 | 3257.000000 | 3188.000000 | 3188.000000 | 2918.000000 | 1429.000000 | 640.000000 | 640.000000 | 819.000000 | 869.000000 | 819.000000 | 873.000000 | 843.000000 | 1707.791626 | 0.958333 | 876.000000 | 0.0 | 648.000000 | 820.000000 | 878.000000 | 879.000000 | 0.0 | 0.0 | 1.000000 | 7.000000 | 14.000000 | 15.000000 | 15.000000 | 7.000000 | 14.000000 | 5.000000 | 8.000000 | 13.000000 | 13.000000 | 5.000000 | 9.000000 | 4.000000 | 4.000000 | 0.0 | 0.0 | 7.000000 | 14.000000 | 5.000000 | 9.000000 | 0.0 | 0.0 | 54.000000 | 54.000000 | 15.000000 | 24.000000 | 1.000000 | 8.000000 | 8.000000 | 48.000000 | 48.000000 | 6.000000 | 12.000000 | 0.0 | 0.0 | 5.000000 | 6.000000 | 12.000000 | 0.0 | 0.0 | 17.000000 | 51.000000 | 6.000000 | 10.000000 | 16.000000 | 16.000000 | 6.000000 | 10.000000 | 7.000000 | 7.000000 | 1.000000 | 6.000000 | 8.000000 | 2.000000 | 0.0 | 0.0 | 6.000000 | 10.000000 | 6.000000 | 8.000000 | 0.0 | 0.0 | 30.000000 | 31.000000 | 7.000000 | 19.000000 | 19.000000 | 7.000000 | 7.000000 | 7.000000 | 7.000000 | 30.000000 | 30.000000 | 1.000000 | 2.000000 | 0.0 | 0.0 | 7.000000 | 7.000000 | 1.000000 | 880.000000 | 1410.000000 | 976.000000 | 12.000000 | 43.000000 | 17.000000 | 869.000000 | 1285.000000 | 928.000000 | 15.000000 | 99.000000 | 54.000000 | 1.000000 | 7.000000 | 7.000000 | 7.000000 | 9.000000 | 9.000000 | 9.000000 | 6.000000 | 6.000000 | 6.000000 | 3.000000 | 3.000000 | 3.000000 | 3.000000 | 3.000000 | 3.000000 | 13.000000 | 13.000000 | 13.000000 | 160000.000000 | 160000.000000 | 160000.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 93736.000000 | 133915.000000 | 98476.000000 | 90750.000000 | 90750.000000 | 90750.000000 | 22.000000 | 33.000000 | 33.000000 | 5.000000 | 9.000000 | 869.000000 | 62.000000 | 297.000000 | 24.000000 | 26.000000 | 20.000000 | 20.000000 | 3389.000000 | 57.000000 | 69.000000 | 18.000000 | 18.000000 | 24.000000 | 24.000000 | 24.000000 | 24.000000 | 55125.000000 | 641511.437500 | 3000.000000 | 3000.000000 | 3000.000000 | 93736.000000 | 98476.000000 | 90750.000000 | 872.000000 | 964.000000 | 19.000000 | 48.000000 | 61.000000 | 31.000000 | 7.000000 | 8.000000 | 14.000000 | 48.000000 | 861.000000 | 1235.000000 | 920.000000 | 83.000000 | 24.000000 | 83.000000 | 40.000000 | 14.000000 | 31.000000 | 37.000000 | 216.000000 | 30.000000 | 30.000000 | 42.000000 | 21.000000 | 44.000000 | 36.000000 | 7.000000 | 16.000000 | 38.000000 | 13.000000 | 21.000000 | 45.000000 | 45.000000 | 55.000000 | 94053.000000 | 139777.000000 | 102387.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 3100.000000 | 8050.000000 | 3100.000000 | 92888.000000 | 129006.000000 | 97628.000000 | 64800.000000 | 64800.000000 | 64800.000000 | 303.000000 | 399.000000 | 377.000000 | 25.000000 | 384.000000 | 384.000000 | 15.000000 | 144.000000 | 51.000000 | 192.000000 | 360.000000 | 54.000000 | 176.000000 | 65.000000 | 293.000000 | 336.000000 | 331.000000 | 121.000000 | 22.000000 | 45.000000 | 39.000000 | 23.000000 | 23.000000 | 7.000000 | 5.000000 | 20.000000 | 57.000000 | 22.000000 | 262.000000 | 45.000000 | 17.000000 | 36.000000 | 22.000000 | 17.000000 | 17.000000 | 23.000000 | 163.000000 | 60.000000 | 87.000000 | 87.000000 | 48.000000 | 66.000000 | 285.000000 | 7.000000 | 49.000000 | 20.000000 | 153600.000000 | 153600.000000 | 153600.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 4000.000000 | 4000.000000 | 4000.000000 | 51200.000000 | 66000.000000 | 51200.000000 | 64800.000000 | 64800.000000 | 64800.000000 | 880.000000 | 975.000000 | 22.000000 | 31.000000 | 56.000000 | 12.000000 | 44.000000 | 6.000000 | 14.000000 | 8.000000 | 9.000000 | 47.000000 | 1031.000000 | 199.000000 | 869.000000 | 1286.000000 | 928.000000 | 93.000000 | 11.000000 | 93.000000 | 49.000000 | 11.000000 | 11.000000 | 16.000000 | 20.000000 | 16.000000 | 1.000000 | 108800.000000 | 145765.000000 | 108800.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 2000.000000 | 2250.000000 | 2250.000000 | 93736.000000 | 134021.000000 | 98476.000000 | 90750.000000 | 90750.000000 | 90750.000000 | 880.000000 | 1411.000000 | 976.000000 | 12.000000 | 44.000000 | 18.000000 | 15.000000 | 99.000000 | 54.000000 | 160000.000000 | 160000.000000 | 160000.000000 | 55125.000000 | 55125.000000 | 55125.000000 | 64800.000000 | 64800.000000 | 64800.000000 | 0.000000 | 999595.000000 | 9.000000 | 0.000000 | 52.000000 | 0.000000 | 52.000000 | 0.000000 | 17.000000 | 0.000000 | 100.000000 | 64.000000 | 720.000000 | 229.000000 | 29.000000 | 671.000000 | 660.000000 | 854.000000 | 43.000000 | 26.000000 | 548.000000 | 216.000000 | 32.000000 |
In [55]:
importance_model = RandomForestClassifier(random_state=0).fit(train_wo_dummy_X, train_y)
C:\Anaconda3\lib\site-packages\sklearn\ensemble\forest.py:246: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22. "10 in version 0.20 to 100 in 0.22.", FutureWarning) C:\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel(). """Entry point for launching an IPython kernel.
In [60]:
import eli5
from eli5.sklearn import PermutationImportance
perm = PermutationImportance(importance_model, random_state=1).fit(valid_wo_dummy_X, valid_y)
eli5.show_weights(perm, feature_names = valid_wo_dummy_X.columns.tolist())
Out[60]:
Weight | Feature |
---|---|
0.0073 ± 0.0011 | C1 |
0.0016 ± 0.0004 | C2 |
0.0015 ± 0.0004 | C11 |
0.0014 ± 0.0005 | C14 |
0.0013 ± 0.0001 | card2 |
0.0013 ± 0.0004 | C13 |
0.0011 ± 0.0003 | TransactionDT |
0.0011 ± 0.0003 | TransactionAmt |
0.0008 ± 0.0004 | card1 |
0.0008 ± 0.0008 | id_17 |
0.0007 ± 0.0001 | addr2 |
0.0007 ± 0.0002 | id_01 |
0.0006 ± 0.0001 | V258 |
0.0006 ± 0.0002 | V45 |
0.0005 ± 0.0003 | V212 |
0.0005 ± 0.0001 | V244 |
0.0005 ± 0.0002 | D8 |
0.0005 ± 0.0001 | V187 |
0.0005 ± 0.0001 | V87 |
0.0004 ± 0.0002 | C12 |
… 370 more … |
In [61]:
eli5.explain_weights(perm, top=400)
Out[61]:
Weight | Feature |
---|---|
0.0073 ± 0.0011 | x10 |
0.0016 ± 0.0004 | x11 |
0.0015 ± 0.0004 | x20 |
0.0014 ± 0.0005 | x23 |
0.0013 ± 0.0001 | x3 |
0.0013 ± 0.0004 | x22 |
0.0011 ± 0.0003 | x0 |
0.0011 ± 0.0003 | x1 |
0.0008 ± 0.0004 | x2 |
0.0008 ± 0.0008 | x380 |
0.0007 ± 0.0001 | x7 |
0.0007 ± 0.0002 | x367 |
0.0006 ± 0.0001 | x285 |
0.0006 ± 0.0002 | x72 |
0.0005 ± 0.0003 | x239 |
0.0005 ± 0.0001 | x271 |
0.0005 ± 0.0002 | x31 |
0.0005 ± 0.0001 | x214 |
0.0005 ± 0.0001 | x114 |
0.0004 ± 0.0002 | x21 |
0.0004 ± 0.0002 | x19 |
0.0004 ± 0.0004 | x368 |
0.0004 ± 0.0002 | x13 |
0.0004 ± 0.0002 | x4 |
0.0004 ± 0.0001 | x216 |
0.0004 ± 0.0001 | x295 |
0.0004 ± 0.0003 | x302 |
0.0004 ± 0.0002 | x17 |
0.0003 ± 0.0002 | x288 |
0.0003 ± 0.0002 | x301 |
0.0003 ± 0.0003 | x25 |
0.0003 ± 0.0003 | x383 |
0.0003 ± 0.0002 | x292 |
0.0003 ± 0.0001 | x215 |
0.0003 ± 0.0002 | x6 |
0.0003 ± 0.0002 | x382 |
0.0003 ± 0.0002 | x71 |
0.0003 ± 0.0001 | x112 |
0.0003 ± 0.0003 | x101 |
0.0002 ± 0.0001 | x389 |
0.0002 ± 0.0001 | x273 |
0.0002 ± 0.0002 | x5 |
0.0002 ± 0.0001 | x232 |
0.0002 ± 0.0001 | x228 |
0.0002 ± 0.0001 | x49 |
0.0002 ± 0.0001 | x74 |
0.0002 ± 0.0001 | x67 |
0.0002 ± 0.0001 | x183 |
0.0002 ± 0.0002 | x29 |
0.0002 ± 0.0002 | x15 |
0.0002 ± 0.0001 | x286 |
0.0002 ± 0.0001 | x303 |
0.0002 ± 0.0001 | x284 |
0.0002 ± 0.0001 | x65 |
0.0002 ± 0.0001 | x305 |
0.0002 ± 0.0001 | x251 |
0.0002 ± 0.0004 | x121 |
0.0002 ± 0.0003 | x32 |
0.0002 ± 0.0002 | x371 |
0.0002 ± 0.0001 | x194 |
0.0002 ± 0.0001 | x388 |
0.0002 ± 0.0001 | x241 |
0.0002 ± 0.0001 | x304 |
0.0002 ± 0.0001 | x246 |
0.0002 ± 0.0001 | x210 |
0.0002 ± 0.0001 | x84 |
0.0002 ± 0.0001 | x51 |
0.0002 ± 0.0001 | x73 |
0.0002 ± 0.0001 | x298 |
0.0002 ± 0.0002 | x27 |
0.0002 ± 0.0001 | x260 |
0.0002 ± 0.0001 | x309 |
0.0002 ± 0.0001 | x205 |
0.0002 ± 0.0002 | x381 |
0.0002 ± 0.0001 | x236 |
0.0002 ± 0.0001 | x319 |
0.0002 ± 0.0002 | x294 |
0.0001 ± 0.0001 | x226 |
0.0001 ± 0.0003 | x77 |
0.0001 ± 0.0001 | x154 |
0.0001 ± 0.0001 | x217 |
0.0001 ± 0.0001 | x279 |
0.0001 ± 0.0001 | x308 |
0.0001 ± 0.0001 | x221 |
0.0001 ± 0.0001 | x48 |
0.0001 ± 0.0001 | x249 |
0.0001 ± 0.0001 | x82 |
0.0001 ± 0.0001 | x379 |
0.0001 ± 0.0000 | x188 |
0.0001 ± 0.0001 | x45 |
0.0001 ± 0.0001 | x242 |
0.0001 ± 0.0001 | x259 |
0.0001 ± 0.0001 | x266 |
0.0001 ± 0.0001 | x359 |
0.0001 ± 0.0001 | x270 |
0.0001 ± 0.0001 | x253 |
0.0001 ± 0.0001 | x64 |
0.0001 ± 0.0003 | x372 |
0.0001 ± 0.0000 | x169 |
0.0001 ± 0.0000 | x263 |
0.0001 ± 0.0002 | x9 |
0.0001 ± 0.0002 | x38 |
0.0001 ± 0.0002 | x334 |
0.0001 ± 0.0001 | x290 |
0.0001 ± 0.0001 | x211 |
0.0001 ± 0.0001 | x124 |
0.0001 ± 0.0000 | x52 |
0.0001 ± 0.0001 | x206 |
0.0001 ± 0.0001 | x272 |
0.0001 ± 0.0001 | x113 |
0.0001 ± 0.0001 | x283 |
0.0001 ± 0.0001 | x115 |
0.0001 ± 0.0001 | x280 |
0.0001 ± 0.0001 | x237 |
0.0001 ± 0.0001 | x252 |
0.0001 ± 0.0001 | x187 |
0.0001 ± 0.0001 | x289 |
0.0001 ± 0.0001 | x321 |
0.0001 ± 0.0002 | x213 |
0.0001 ± 0.0000 | x387 |
0.0001 ± 0.0001 | x347 |
0.0001 ± 0.0001 | x128 |
0.0001 ± 0.0001 | x342 |
0.0001 ± 0.0001 | x181 |
0.0001 ± 0.0002 | x16 |
0.0001 ± 0.0000 | x313 |
0.0001 ± 0.0001 | x161 |
0.0001 ± 0.0000 | x168 |
0.0001 ± 0.0001 | x276 |
0.0001 ± 0.0002 | x106 |
0.0001 ± 0.0001 | x299 |
0.0001 ± 0.0000 | x370 |
0.0001 ± 0.0001 | x254 |
0.0001 ± 0.0001 | x175 |
0.0001 ± 0.0000 | x364 |
0.0001 ± 0.0001 | x341 |
0.0001 ± 0.0001 | x278 |
0.0001 ± 0.0001 | x344 |
0.0001 ± 0.0001 | x69 |
0.0001 ± 0.0002 | x293 |
0.0001 ± 0.0002 | x335 |
0.0001 ± 0.0001 | x66 |
0.0001 ± 0.0002 | x24 |
0.0001 ± 0.0001 | x207 |
0.0001 ± 0.0001 | x37 |
0.0001 ± 0.0000 | x243 |
0.0001 ± 0.0000 | x384 |
0.0001 ± 0.0000 | x353 |
0.0001 ± 0.0001 | x202 |
0.0001 ± 0.0001 | x197 |
0.0001 ± 0.0000 | x223 |
0.0001 ± 0.0001 | x227 |
0.0001 ± 0.0001 | x104 |
0.0001 ± 0.0001 | x350 |
0.0001 ± 0.0000 | x199 |
0.0001 ± 0.0001 | x170 |
0.0001 ± 0.0000 | x377 |
0.0001 ± 0.0002 | x314 |
0.0001 ± 0.0001 | x322 |
0.0001 ± 0.0001 | x257 |
0.0000 ± 0.0001 | x351 |
0.0000 ± 0.0002 | x378 |
0.0000 ± 0.0001 | x245 |
0.0000 ± 0.0001 | x261 |
0.0000 ± 0.0001 | x264 |
0.0000 ± 0.0001 | x248 |
0.0000 ± 0.0001 | x343 |
0.0000 ± 0.0001 | x88 |
0.0000 ± 0.0000 | x193 |
0.0000 ± 0.0000 | x141 |
0.0000 ± 0.0000 | x172 |
0.0000 ± 0.0000 | x190 |
0.0000 ± 0.0001 | x200 |
0.0000 ± 0.0000 | x196 |
0.0000 ± 0.0000 | x363 |
0.0000 ± 0.0001 | x174 |
0.0000 ± 0.0000 | x336 |
0.0000 ± 0.0001 | x300 |
0.0000 ± 0.0001 | x179 |
0.0000 ± 0.0000 | x150 |
0.0000 ± 0.0000 | x330 |
0.0000 ± 0.0000 | x125 |
0.0000 ± 0.0000 | x165 |
0.0000 ± 0.0000 | x386 |
0.0000 ± 0.0000 | x374 |
0.0000 ± 0.0000 | x100 |
0.0000 ± 0.0000 | x160 |
0.0000 ± 0.0001 | x291 |
0.0000 ± 0.0001 | x244 |
0.0000 ± 0.0000 | x189 |
0.0000 ± 0.0000 | x132 |
0.0000 ± 0.0001 | x111 |
0.0000 ± 0.0000 | x225 |
0.0000 ± 0.0000 | x136 |
0.0000 ± 0.0000 | x186 |
0.0000 ± 0.0001 | x129 |
0.0000 ± 0.0001 | x99 |
0.0000 ± 0.0001 | x258 |
0.0000 ± 0.0001 | x182 |
0.0000 ± 0.0001 | x53 |
0.0000 ± 0.0001 | x325 |
0.0000 ± 0.0001 | x123 |
0.0000 ± 0.0002 | x297 |
0.0000 ± 0.0001 | x274 |
0.0000 ± 0.0001 | x345 |
0.0000 ± 0.0002 | x230 |
0.0000 ± 0.0002 | x195 |
0.0000 ± 0.0001 | x157 |
0.0000 ± 0.0001 | x119 |
0.0000 ± 0.0001 | x184 |
0.0000 ± 0.0001 | x235 |
0.0000 ± 0.0001 | x346 |
0.0000 ± 0.0001 | x316 |
0.0000 ± 0.0002 | x92 |
0.0000 ± 0.0001 | x85 |
0.0000 ± 0.0000 | x327 |
0.0000 ± 0.0000 | x267 |
0.0000 ± 0.0000 | x268 |
0.0000 ± 0.0000 | x250 |
0.0000 ± 0.0001 | x155 |
0.0000 ± 0.0001 | x317 |
0.0000 ± 0.0001 | x68 |
0.0000 ± 0.0001 | x58 |
0.0000 ± 0.0001 | x339 |
0.0000 ± 0.0001 | x36 |
0.0000 ± 0.0001 | x178 |
0.0000 ± 0.0000 | x329 |
0.0000 ± 0.0000 | x149 |
0.0000 ± 0.0000 | x338 |
0.0000 ± 0.0000 | x311 |
0.0000 ± 0.0000 | x337 |
0.0000 ± 0.0000 | x140 |
0.0000 ± 0.0000 | x162 |
0.0000 ± 0.0000 | x324 |
0.0000 ± 0.0001 | x60 |
0.0000 ± 0.0001 | x320 |
0.0000 ± 0.0001 | x42 |
0.0000 ± 0.0001 | x369 |
0.0000 ± 0.0001 | x191 |
0.0000 ± 0.0001 | x139 |
0.0000 ± 0.0001 | x109 |
0.0000 ± 0.0002 | x120 |
0.0000 ± 0.0003 | x256 |
0.0000 ± 0.0001 | x98 |
0 ± 0.0000 | x361 |
0 ± 0.0000 | x34 |
0 ± 0.0000 | x55 |
0 ± 0.0000 | x116 |
0 ± 0.0000 | x63 |
0 ± 0.0000 | x62 |
0 ± 0.0000 | x117 |
0 ± 0.0000 | x118 |
0 ± 0.0000 | x103 |
0 ± 0.0000 | x54 |
0 ± 0.0000 | x39 |
0 ± 0.0000 | x102 |
0 ± 0.0000 | x40 |
0 ± 0.0000 | x365 |
0 ± 0.0000 | x296 |
0 ± 0.0000 | x97 |
0 ± 0.0000 | x352 |
0 ± 0.0000 | x96 |
0 ± 0.0000 | x75 |
0 ± 0.0000 | x76 |
0 ± 0.0000 | x80 |
0 ± 0.0000 | x95 |
0 ± 0.0000 | x81 |
0 ± 0.0000 | x354 |
0 ± 0.0000 | x135 |
0 ± 0.0000 | x57 |
0 ± 0.0000 | x220 |
0 ± 0.0000 | x171 |
0 ± 0.0000 | x332 |
0 ± 0.0000 | x18 |
0 ± 0.0000 | x8 |
0 ± 0.0000 | x156 |
0 ± 0.0000 | x328 |
0 ± 0.0000 | x376 |
0 ± 0.0000 | x148 |
0 ± 0.0000 | x147 |
0 ± 0.0000 | x146 |
0 ± 0.0000 | x145 |
0 ± 0.0000 | x144 |
0 ± 0.0000 | x143 |
0 ± 0.0000 | x142 |
0 ± 0.0000 | x56 |
0 ± 0.0000 | x12 |
0 ± 0.0000 | x326 |
0 ± 0.0000 | x247 |
0 ± 0.0000 | x357 |
0 ± 0.0000 | x134 |
0 ± 0.0000 | x137 |
0 ± 0.0000 | x14 |
0 ± 0.0000 | x138 |
0 ± 0.0000 | x385 |
-0.0000 ± 0.0000 | x163 |
-0.0000 ± 0.0000 | x47 |
-0.0000 ± 0.0002 | x307 |
-0.0000 ± 0.0001 | x87 |
-0.0000 ± 0.0001 | x312 |
-0.0000 ± 0.0001 | x287 |
-0.0000 ± 0.0001 | x360 |
-0.0000 ± 0.0001 | x110 |
-0.0000 ± 0.0001 | x59 |
-0.0000 ± 0.0001 | x108 |
-0.0000 ± 0.0000 | x218 |
-0.0000 ± 0.0003 | x61 |
-0.0000 ± 0.0001 | x366 |
-0.0000 ± 0.0001 | x318 |
-0.0000 ± 0.0001 | x164 |
-0.0000 ± 0.0001 | x26 |
-0.0000 ± 0.0001 | x78 |
-0.0000 ± 0.0001 | x177 |
-0.0000 ± 0.0001 | x315 |
-0.0000 ± 0.0000 | x122 |
-0.0000 ± 0.0001 | x231 |
-0.0000 ± 0.0000 | x131 |
-0.0000 ± 0.0000 | x33 |
-0.0000 ± 0.0001 | x233 |
-0.0000 ± 0.0001 | x234 |
-0.0000 ± 0.0002 | x255 |
-0.0000 ± 0.0001 | x340 |
-0.0000 ± 0.0001 | x203 |
-0.0000 ± 0.0001 | x107 |
-0.0000 ± 0.0001 | x348 |
-0.0000 ± 0.0001 | x153 |
-0.0000 ± 0.0000 | x358 |
-0.0000 ± 0.0001 | x180 |
-0.0000 ± 0.0001 | x176 |
-0.0000 ± 0.0001 | x105 |
-0.0000 ± 0.0003 | x86 |
-0.0000 ± 0.0001 | x306 |
-0.0000 ± 0.0001 | x209 |
-0.0000 ± 0.0000 | x349 |
-0.0000 ± 0.0000 | x151 |
-0.0000 ± 0.0000 | x212 |
-0.0000 ± 0.0001 | x275 |
-0.0000 ± 0.0001 | x167 |
-0.0000 ± 0.0001 | x219 |
-0.0000 ± 0.0000 | x133 |
-0.0000 ± 0.0001 | x269 |
-0.0000 ± 0.0000 | x130 |
-0.0000 ± 0.0000 | x356 |
-0.0000 ± 0.0000 | x158 |
-0.0000 ± 0.0000 | x373 |
-0.0000 ± 0.0000 | x127 |
-0.0000 ± 0.0002 | x333 |
-0.0000 ± 0.0001 | x204 |
-0.0000 ± 0.0001 | x41 |
-0.0000 ± 0.0001 | x173 |
-0.0000 ± 0.0001 | x46 |
-0.0000 ± 0.0001 | x126 |
-0.0000 ± 0.0001 | x222 |
-0.0000 ± 0.0000 | x265 |
-0.0000 ± 0.0000 | x331 |
-0.0000 ± 0.0001 | x35 |
-0.0000 ± 0.0001 | x50 |
-0.0000 ± 0.0001 | x44 |
-0.0000 ± 0.0001 | x185 |
-0.0000 ± 0.0000 | x355 |
-0.0001 ± 0.0001 | x28 |
-0.0001 ± 0.0001 | x310 |
-0.0001 ± 0.0001 | x277 |
-0.0001 ± 0.0000 | x362 |
-0.0001 ± 0.0001 | x323 |
-0.0001 ± 0.0002 | x201 |
-0.0001 ± 0.0002 | x91 |
-0.0001 ± 0.0001 | x30 |
-0.0001 ± 0.0001 | x262 |
-0.0001 ± 0.0000 | x43 |
-0.0001 ± 0.0000 | x159 |
-0.0001 ± 0.0002 | x93 |
-0.0001 ± 0.0001 | x375 |
-0.0001 ± 0.0001 | x70 |
-0.0001 ± 0.0001 | x90 |
-0.0001 ± 0.0001 | x238 |
-0.0001 ± 0.0000 | x192 |
-0.0001 ± 0.0001 | x282 |
-0.0001 ± 0.0001 | x281 |
-0.0001 ± 0.0002 | x79 |
-0.0001 ± 0.0001 | x152 |
-0.0001 ± 0.0001 | x208 |
-0.0001 ± 0.0001 | x240 |
-0.0001 ± 0.0001 | x198 |
-0.0001 ± 0.0002 | x229 |
-0.0001 ± 0.0002 | x94 |
-0.0001 ± 0.0001 | x89 |
-0.0002 ± 0.0001 | x224 |
-0.0002 ± 0.0001 | x166 |
-0.0002 ± 0.0003 | x83 |
In [ ]: